Self-Supervised Learning of Smart Contract Representations

Shouliang Yang, Xiaodong Gu, Beijun Shen*
School of Software, Shanghai Jiao Tong University
Shanghai, China
{ysl0108,xiaodong.gu,bjshen}@sjtu.edu.cn

ABSTRACT

Learning smart contract representations can greatly facilitate the
development of smart contracts in many tasks such as bug detec-
tion and clone detection. Existing approaches for learning program
representations are difficult to apply to smart contracts which have
insufficient data and significant homogenization. To overcome these
challenges, in this paper, we propose SRCL, a novel, self-supervised
approach for learning smart contract representations. Unlike ex-
isting supervised methods, which are tied on task-specific data la-
bels, SRCL leverages large-scale unlabeled data by self-supervised
learning of both local and global information of smart contracts. It
automatically extracts structural sequences from abstract syntax
trees (ASTs). Then, two discriminators are designed to guide the
Transformer encoder to learn local and global semantic features
of smart contracts. We evaluate SRCL on a dataset of 75,006 smart
contracts collected from Etherscan. Experimental results show that
SRCL considerably outperforms the state-of-the-art code represen-
tation models on three downstream tasks.

KEYWORDS

Smart Contract, Self-supervised Learning, Code Representation Learn-
ing, Data Augmentation

ACM Reference Format:

Shouliang Yang, Xiaodong Gu, Beijun Shen. 2022. Self-Supervised Learning
of Smart Contract Representations. In 30th International Conference on Pro-
gram Comprehension (ICPC 22), May 16—17, 2022, Virtual Event, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3524610.3527894

1 INTRODUCTION

Smart contracts, the universal and vital programs that are deployed
on blockchains, have gained increasing attention with the rapid de-
velopment of blockchains. For example, more than 10 million smart
contracts have been deployed on the Ethereum Mainnet [18]. A
smart contract is an event-driven, state-based program that is writ-
ten in high level languages such as Solidity'. Smart contracts have
been widely used in many business domains to enable efficient and
trustful transactions [38, 42, 46].

“Beijun Shen is the corresponding author.
!https://solidity.readthedocs.io/en/v0.6.0/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16-17, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9298-3/22/05...$15.00

https://doi.org/10.1145/3524610.3527894

Unlike general programs, the development of smart contracts re-
quires special effort due to their unique characteristics. First, smart
contracts are more bug intolerant compared with general programs.
“Code is law”, a smart contract can not be modified once it has been
released. This is because transactions of a smart contract always in-
volve cryptocurrencies which are worthy of millions of dollars (e.g.
The DAO). A bug in a smart contract may lead to a substantial loss.
Therefore, ensuring the correctness of contracts before releasing
is critical. This requires us to reuse experience of developed con-
tracts in the past when developing new contracts. Program min-
ing for smart contracts such as summarization [55], checking [14],
and code search [45] can greatly facilitate the development and
maintenance of smart contracts.

Learning smart contract representations, namely, converting a
smart contract into a continuous, high-dimensional vector, acts as
the core process in program mining [3]. Like common program-
ming languages, smart contracts are composed of lexical tokens
and parsing trees. Such discrete and structural data can hardly be
understood by machine learning models [20]. For example, there
can be special relationships between smart contracts. However,
capturing semantic similarities between contracts is nontrivial by
text matching due to the numerous variants in terms of variables
and structures. Hence, it is strongly demanded to convert smart
contracts into dense, continuous vectors that reflect their seman-
tics.

Although learning program representations has been well stud-
ied, learning smart contract representations faces many challenges.
Compared to general programming languages, there is often a scarce
availability of large and labeled datasets for training deep code
representation models. It is costly and laborious to build a large
scale and high-quality dataset with human labeling. For example,
an image segmentation dataset containing 10k+ high-quality sam-
ples could cost up to a million-dollar [43].

Second, and more critically, smart contracts are highly homoge-
neous and redundant. In order to gain trusts from users, authors of
smart contracts often publicly open source their contracts. As a re-
sult, developers tend to clone existing contracts rather than taking
the risk of coding from scratch. According to the statistics by Chen
et al. [8], about 26% contract code blocks are cloned at an average
of 14.6 times. Only 20.8% of the studied contracts are completely
original [27]. Such data redundancy can cause machine learning
models to be poorly fitted especially on scarce training samples.
This causes further issues such as clone related bugs and plagia-
rism.

To address the aforementioned challenges, we propose SRCL, a
novel approach for learning smart contract representations. SRCL
is based on self-supervised learning. That is, it trains a neural repre-
sentation model by leveraging tremendous amounts of unlabeled
smart contracts. SRCL starts by converting the abstract syntax tree

https://doi.org/10.1145/3524610.3527894
https://doi.org/10.1145/3524610.3527894

ICPC °22, May 16-17, 2022, Virtual Event, USA

(AST) of each smart contract into a pair of type and value sequences
using pre-order traversal. The type sequence involves structural in-
formation while the value sequence retains semantic information.
Then, three operations are performed upon the pairs of sequences
in order to increase the scale and diversity of training samples.

Based on the augmented code variants, SRCL trains a Trans-
former encoder which encodes smart contract code into vectors
through three components: a local discriminator which assists the
encoder to capture lexical and syntactical features, a global discrim-
inator which enables the encoder to learn global semantics of code,
and a decoder which aims to reconstruct the value sequence of the
input code.

To evaluate the effectiveness of SRCL in learning smart con-
tract representations, we collect 75,006 smart contracts from Ether-
scan®.

We extensively evaluate SRCL on three downstream tasks, namely,
bug detection, clone detection, and code clustering, and compare
the performance against three recently proposed approaches, in-
cluding SmartEmbed [14], code2vec [2], and code2seq [1]. Experi-
mental results show that SRCL outperforms baseline models signif-
icantly. It improves F1-scores of the three tasks by 6.96%, 4%, and
8.81%, respectively.

The main contributions of this paper can be summarized as fol-
lows:

e We propose a novel approach for learning smart contract
representations, which leverages three self-supervised learn-
ing tasks for capturing both global and local semantic infor-
mation of source code.

e We propose three operations for generating code variants,
namely, type replacement, value replacement, and pair inser-
tion to increase the scale and diversity of training samples.

e We build a dataset for clone detection and code clustering
tasks of smart contracts.

The dataset and source code of SRCL are publicly available at: https://
github.com/SCRepslearner/SmartLearner.

2 BACKGROUND

2.1 Smart Contract

Smart contracts are general-purpose computer programs that run
on Ethereum. Smart contracts have been widely applied to many
fields such as currency trading platforms, crowdfunding campaigns,
and role-playing games. A smart contract is a series of instruc-
tions or operations which will be triggered when certain condi-
tions are satisfied. Smart contracts achieve a great success because
they eliminate the need of trusted third parties in multiparty inter-
actions so that parties can engage in secure peer-to-peer transac-
tions without having to place trust in external parties.

Figure 1 shows a basic structure of smart contract. Generally, a
smart contract is consists of four elements: a unique address identi-
fies the contract, a set of executable functions, state variables, and
values [4]. It takes as input transactions with function parameters,
executes the corresponding code and triggers the output events.
Upon the execution of a function, the state variables in the con-
tract change according to the logic implemented in the function.

Zhttp://etherscan.io/

Shouliang Yang, Xiaodong Gu, and Beijun Shen

Messages to
other contracts
(Data, Value)
| e,

Smart Contract

Transaction

(Data,Value) ‘ Address ‘
P

Externally State ‘

Owned Account

Event

‘ Value ‘ ‘ Functions

Figure 1: The basic structure of smart contracts [47].

In Ethereum, smart contracts are primarily written in Solidity,
which is a high-level contract-oriented programming language. Source
code in Solidity can be compiled to bytecode run on the Ethereum
Virtual Machine (EVM). The syntax of Solidity resembles that of
general object-oriented languages such as Java and C++. A source
file of Solidity may contain three key structures, namely, libraries,
interfaces, and subcontracts. A library is a piece of code that pro-
vides a set of common functionalities that are mindful of corner-
cases or that optimize processing time. Library is stateless and
doesn’t contain state variables. Analogous to the interface in Java,
an interface in Solidity is an abstract contract which does not have
any implemented functions. A subcontract is a contract that imple-
ments a certain concepts. It contains state variables and functions
for accessing and modifying the state variables. In solidity, a sub-
contract often inherits and realizes an interface.

2.2 Data Augmentation

Data augmentation (DA) aims to increase both the amount and
diversity of a dataset without explicitly collecting more data[11].
DA has become a practical technique in computer vision and natu-
ral language processing (NLP) tasks that have low resources and a
paucity of annotated data [11, 36]. DA is often regarded as a regu-
larizer to reduce the risk of overfitting when training deep learning
models. Due to its effectiveness, DA has been increasingly lever-
aged as a key technique of self-supervised learning.

DA techniques can be roughly classified into three categories,
namely, rule-based approaches, model-driven approaches, and ex-
ample interpolation approaches [11].

The rule-based approaches directly apply slight modifications
that follow some heuristic rules on the copies of the original sam-
ples. For example, the EDA model [52] improves text classification
by token-level perturbation, including synonym replacement, ran-
dom insertion, random swap, and random detection. Sahin et al. [39]
augmented the training sets of low-source languages by cropping
and rotating the dependency tree of sentences.

Model-based approaches augment samples by using a well-trained
neural network. The typical model-based DA technique is back-
translation [44] which translates original sentences into interme-
diate languages and then back translates them to paraphrases. Cai
et al. [7] proposed an end-to-end learnable data manipulation model
for augmenting effective training samples and reducing the weights
of inefficient samples. This model has been shown to be effective
in boosting dialogue systems.

The idea of example interpolation comes from Mixup [56]. Given
two pairs of real samples and their one-hot labels: (x;, y;) and (xj,y;),
Mixup constructs a new virtual sample (X, §) by incorporating them

Self-Supervised Learning of Smart Contract Representations

together with a parameter A:
X =Ax; + (1 —A)x]'

§= i+ (1- Dy W

Inspired by Mixup, Guo et al. [16] proposed wordMixup and
sentMixup for sentence classification that interpolate samples in
the word and sentence embedding spaces, respectively.

2.3 Self-Supervised Learning

As the most common technique for training neural networks, su-
pervised learning has its own bottleneck since it relies heavily on
manual labeled data. As an alternative, self-supervised learning
(SSL) shows its potential in leveraging the tremendous amounts
of unlabeled data. SSL has drawn much attention for its broad ap-
plicability on various machine learning tasks such as image recog-
nition [17, 26], pre-trained language models [9, 29, 54], and graph
representation learning [10, 50]. The goal of SSL is to predict par-
tial attributes of an object from remaining parts. Given an object
x, SSL usually trains an encoder which encodes x into an explicit
vector z by predicting an automatically generated label for a pre-
defined self-supervised task. In such a way, the explicit vector z
can be leveraged by downstream tasks, since it contains universal
features from x that benefit to different tasks.

It is critical to choose proper self-supervised tasks in SSL, since
they enable the encoder to learn semantics of objects. In natural
language processing, there are a variety of self-supervised tasks.
As a typical SSL-based technique, Word2vec [35] learn word em-
beddings by predicting a word from its contexts within a certain
size of window. BERT [9] utilizes the masked language model as a
self-supervised task by predicting the masked words in a sentence.
WKLM [53] adopts the replaced entity detection task and trains a
knowledge-enhanced pre-trained language model for entity-related
question answering. XLNet [54] introduces a permutation language
model, which combines the strengths of both auto-regressive lan-
guage model and auto-encoder language model. XLNet learns bidi-
rectional contexts by maximizing the expected likelihood over all
permutations of the factorization order. InfoWord [28] is proposed
to learn language representations by maximizing the mutual in-
formation between a representation of a sentence and an n-gram
within it.

3 APPROACH

3.1 Overview

Figure 2 illustrates the overall framework of SRCL. The pipeline
involves three phases, namely, constructing structural sequences,
generating code variants, and representation learning. Initially, we
extract structural sequences from smart contract ASTs to facilitate
deep representation learning of structures. Then, we augment the
processed contracts by generating code variants using three opera-
tions, namely, type replacement (TR), value replacement (VR), and
pair insertion (PI). Subsequently, we design a self-supervised rep-
resentation model which takes as input the augmented structural
sequences and outputs the code vectors. Finally, We leverage the
generated code vectors to assist three crucial downstream tasks for
smart contracts.

ICPC 22, May 16-17, 2022, Virtual Event, USA

Smart g ;\ ‘\)4' ié\‘@
Contracts c)i Dk

@Constructing @Generating
Structural Sequences Code Variants

Code Clustering
Clone Detection
Bug Detection

@Downstream QRepresentation
Tasks Learning

Augmented
Samples

Figure 2: The framework of SRCL.

3.2 Constructing Structural Sequences

The main challenge of learning code representations is how to in-
corporate structural information in source code [19, 20, 57]. Struc-
tures are significant features for modeling source code [19] as they
specify how different statements interact with each other to accom-
plishing certain functionality. Simply treating source code as plain
texts will lose the additional semantics to the program functional-
ity besides the lexical terms, resulting in inferior performance [20].

In order to learn both semantic and syntactic information in
smart contracts, our approach starts from extracting structures from
smart contracts. We convert each smart contract into two sequences,
namely, AST type sequence and AST value sequence by travers-
ing its modified AST. Such sequential representations of structural
data can be easily processed by modern sequence learning models
such as the Transformer [25].

Figure 3 shows the detailed process. Given a smart contract, we
initially build its AST. Each node in the AST contains two elements,
namely, node type and node value. The node value is the concrete
token occurring in the source code while the node type is its ab-
stract type. For example, the root node in Figure 3 has a node type
“ContractDefinition” with its contract name “shapeCalculator” as
the corresponding node value.

For non-terminal (NT) nodes that have no information of node
value, default values will be padded according to their types. For
example, if an NT node has a type “FunctionCall” and has no cor-
responding value, we will assign it a default value “FunctionCall-
Value”.

Next, we generate two structural sequences (i.e., the type se-
quence and the value sequence) through a pre-order traversal on
the AST. These sequences can be used as structural information of
smart contract source code for further representation learning.

3.3 Generating Code Variants

Another challenge of learning code representations lies in the ho-
mogeneity of smart contract source code. In order to capture the
deep semantic features in smart contracts, we need large amounts
of variants for training a deep representation model.

ICPC °22, May 16-17, 2022, Virtual Event, USA

1 pragma solidity 70.4.0;
2
3 cont shapeCalculator {
4 function rectangle (uint w, uint h)
returns (uir s, uint p){
5 s =w * h;
6 p=2%* (w+h);
7 }
8} Source Code
@ Generate AST
; ContractDefinition N
AST shapeCalculator
FunctionDefinition
rectangle
|
‘ \
Block ParameterList
BlockValue ParameterListValue

ExpressionStatement
ExpressionStatementValue Parameter Parameter
I ‘] w h

BinaryOperation

BinaryOperation

[
Identifier BinaryOperation Identifier BinaryOperation
s b

Identifier Identifier NumberLiteral

ﬂ Preorder Traversal

Type sequence: ContractDefinition — FunctionDefinition — Block —
ExpressionStatement, ..

Structural Sequence

culator — rectangle - BlockValue —

Value sequence

onSta

Express

Figure 3: An illustration of constructing structural se-
quences for smart contracts.

Inspired by previous works on data augmentation [51, 52], we
propose three code variants generation operations. More specifi-
cally, given all structural sequences, we maintain a key-value map
M for all the type tokens and the value tokens, where the key is
a type token and the values are its corresponding value tokens
from the ASTs. Given a sample S =< T,V > in our training set,
where T = (t1,t9,...,t,) represents the type sequence, and V =
(v1,v9, ...,vn) represents the value sequence, we perform the fol-
lowing three operations, each repeated K times:

1) Type Replacement (TR): we randomly choose a token from
the type sequence and replace it with another random type
token from M.

2) Value Replacement (VR): we randomly choose a token v; from
the value sequence and replace it with another value token
v;(i # j) from M, where v; and v; associated with the same
type token.

3) Pair Insertion (PI): we find a random pair < t;,0; > from M
and insert it into a random position of the sample.

We hypothesize that long sequences can absorb more noise while
maintaining their original semantic information. Therefore, the num-
ber of value tokens changed, K, is calculated by the formula K = al,
where [is the length of the sequence, and « indicates the percent

Shouliang Yang, Xiaodong Gu, and Beijun Shen

of the tokens or pairs in a sequence are changed. Compared with
the original sample, TR and PI change the syntax and structural in-
formation, while VR maintains the original syntax and structures
and changes the semantics of original sample.

All the generated variants, together with the original training
samples, are taken as input to the representation learning model.

3.4 Representation Learning

We design a neural network model for learning representations of
smart contracts from the structural and sequential input as well
as the sufficient variants of code. Figure 4 shows its architecture
overview. The model mainly consists of four components, namely,
encoder, local discriminator, global discriminator, and decoder.

The learning process involves three steps. First, the encoder takes
as input the structural sequences of a smart contract and generates
the local representation using the Transformer [49] encoder. The
encoded local representation is aggregated into a global represen-
tation using a convolutional neural network (CNN) [13]. Second,
local and global discriminators are applied to the local and global
representation respectively and discriminate whether each token
or the whole semantic has been changed (i.e., token replaced pre-
diction task and real-fake sample prediction task), so as to learn the
local and global features of a smart contract. Third, the decoder
takes as input the global representation and learns to reconstruct
the original value sequence (i.e., value sequence recovery task).
Transformer Encoder. Let S =< T,V > denotes a smart contract
in the form of structural sequences, where T = t1, ..., t, stands for
the type sequence and V' = vy, ..., v, stands for the value sequence.
The Transformer encoder takes S as input, and embeds each of the
token in T and V into a d-dimensional vector.

e(T) = [e(t1), ... e(tn)]
e(V) = [e(v1),e(vn)]

The type and value embeddings are summed up into one sequence:

()

x = [x1, ..., Xn], 3

where x; = e(t;) + e(v;).
Then the Transformer encoder generates the local representa-
tions from x:

Rigcal = [Hi, ..., Hy] = Enc(xy, ..., xp), 4)

where each H; € R? stands for the hidden state of the encoder for
the i*? input token.

Subsequently, a CNN is applied to summarize the local represen-
tations into global representation, as shown in Figure 5. Each filter
in the CNN generates a feature map from the local representation:

ci = ReLUW - Hy.j1p-1),

f = maxpooling([e1, c2, ...

5 Cn])> (5)
where ReLU is an activation function, W is a trainable parameter
matrix, ¢; stands for a feature over a window of k vectors from
Rjocal, and f stands for the most important feature in the feature
map.

Finally, all feature maps are concatenated and passed into a lin-
ear layer, yielding the global representation.

Rgiobal =W - [fi;.5 fnl (6)

Self-Supervised Learning of Smart Contract Representations

O 000 8O-

Local discriminator

1
: [
1 [
1 N
i Linear & Softmax ! '
! 1
1 1
! MLP & LayerNorm & Dropout . E
1 |

Global discriminator
Linear & Softmax

MLP & LayerNorm & Dropout

ICPC 22, May 16-17, 2022, Virtual Event, USA

Decoder

1 1
[|
[|
o :

i
\ ! Transpose & MLP !
o i
[|
[|

CNN & Max Pooling & MLP

type - token vector

value - token vector

Transformer Encoder

Encoder

Figure 4: The architecture of our representation learning model.

Global Representation

3

Linear
Max Pooling Max Pooling Max Pooling
Conv & ReLU Conv & ReLU Conv & ReLU

Local Representation

Figure 5: The generation of global representation.

Global Discriminator. Given the global representation of a smart
contract, a global discriminator is designed to perform the real-fake
sample prediction task, which predicts whether the contract is syn-
tactically changed. We formulate this as a classification problem
where either a positive sample (the original sample or sample cre-
ated by VR) or a negative sample (sample created by TR and PI)
of contract is provided to the discriminator. The global represen-
tation Rglobal is passed to an MLP classifier and the probability
distribution over labels is returned.

9 = softmax(ReLU(LayerNorm((Rglobal - W1)..Wn)), (7)

where W; € R9*d represents the weight matrix for the it" fully-
connected layer, LayerNorm stands for layer normalization, and
ReLU is the activation function.

The global discriminator is trained to minimize the following
cross-entropy loss of real-fake sample prediction task:

Ly =-(ogy?(#%) + (1 - 9) - log(1 - 79)), ®)
where y9 and 7Y are the true label and probability.

Local Discriminator. Apart from the global discriminator which
judges the changing state of the whole contract, we also design
a local discriminator to accomplish the token replaced prediction

task, which predicts for each token whether it is changed or not
and what is the type of the change (i.e., TR, VR or PI).

The local discriminator is also implemented with an MLP clas-
sifier. It takes as input the local representation at each position of
the contract and classifies the type of change for the position:

j' = softmax(R W),)

local’

where il stands for the probability distribution over labels, and W,
stands for the trainable parameter matrix.

Similarly, the local discriminator aims to minimize the following
cross-entropy loss of token replaced prediction task:

N C
ZZ ;1og(i). (10)

i=1 j=1

where y and § y denote the true label and the probability of the

ith token belonglng to the j!” category, respectively; C; represents
the number of categories; and N represents the length of the input
sequence.

Decoder. The decoder aims to complete the value sequence recov-
ery task, which reconstructs the value sequence from the global
representation. Similar to the global discriminator, we first pass
the global representation to a fully-connected neural network, and

obtain the output R lobal € € R™™_Subsequently, we apply a trans-

i R nxm
pose operation on Ryjqden: Rglobal e R — Rglob'll
and put it into a fully-connected neural network to obtain the prob-

ability distribution over labels:

Ran

Rglobml = ReLU(LayerNorm((R

yd = softmax(R

global W1+ b1)...Wn),

11)

global’ * Wo).

ICPC °22, May 16-17, 2022, Virtual Event, USA

The decoder is trained to minimize the following loss function
of value sequence recovery task:

N Cgq

1 -
La=-v D, D vijloel). (12)

i=1 j=1
where y;jj and g;f | denote the true label and the probability of the
ith token in the jt" category, respectively; and C; represents the
number of categories.

Model Training. We train our model by minimizing the total loss,
which is defined as the weighted sum of the losses of three self-
supervised learning tasks [31]:

1
£=2—2£g

1
£1+2—2£d+log(1+092)+10g(1+012)+log(1+0'2),
g,
9

%4
(13)
where Ly, £}, and L; represent the loss functions for the three

+_
2012

tasks, respectively; 69, ot ,and o4 are their weighting factors, which
are automatically learned in the training process.

3.5 Downstream Tasks

We test our SRCL on three downstream tasks, namely, bug detec-
tion, code clone detection, and code clustering. They are all well
known tasks for evaluating code representations and are also crit-
ical tasks for smart contracts.

Bug Detection. Programmers tend to copy and paste existing smart
contract code rather writing it from scratch, which may introduce

clone-related bugs into programs. Therefore, this task aims to de-
tect whether a given code snippet is “similar” to any known bug

[14]. Figure 6 shows the process of bug detection. First, we con-
struct a bug embedding matrix of known buggy smart contract

files using representation models. Then, given a smart contract file

to be detected, we obtain its code vector and calculate its similar-
ity with each vector in the bug embedding matrix. Since each file

contains several subcontracts, we measure the similarity between

two files using the “group similarity” between their subcontracts,

namely,

Z?;Il max({sim(A]i\;IBj) [1<j< N})) (14)

where M and N are the numbers of subcontracts in file A and file
B, and A; and B; stand for two individual subcontracts in the two
files, respectively; sim denotes the cosine similarity function. If the
similarity between the given contract and a known buggy contract
exceeds a predefined threshold, then the contract is reported as a
potential bug.

sim(A, B) =

Code Clone Detection. The code clone detection task aims to de-
tect whether two smart contracts are semantically identical, i.e.,
implement the same functionality [57]. Given a pair of smart con-
tracts, we predict them as a cloned pair if the similarity between
their code vectors is greater than a predefined threshold.

Code Clustering. The code clustering task aims to cluster all smart
contracts (without class labels) according to the pairwise similar-
ities between their code vectors. We cluster all contracts into K
clusters using the k-Means [23] algorithm. Next, we measure the

Shouliang Yang, Xiaodong Gu, and Beijun Shen

cosine

similarity
A
|
,,,,, IS
— s (| HEEEEEEEN----- i
i
BuggySmart | | | bbb e |
_____ - > "
]
_____ P
Code !
N | | | | | | | | EEEEEE >
Representation _
Methods Embedding Matirx

Test Contract File

Figure 6: The process of bug detection.

Table 1: Statistics of the dataset for learning code represen-
tations.

contracts 55,006
original # distinct subcontracts 290,390
g # statements 14,673,335
avg lines per distinct subcontract 59.47
samples 1,161,560
augmented
avg sequence length 185.73

correctness of the output clusters by calculating the ARI score [41]
based on the real class labels of these smart contracts.

4 EXPERIMENTAL SETUP

We conduct several experiments with the aims of investigating the
following research questions (RQs):

e RQ1: How effectively does our SRCL perform under three
downstream tasks, compared with the state-of-the-art meth-
ods?

¢ RQ2: How do internal components or techniques contribute
to the effectiveness of SRCL?

4.1 Datasets

Dataset for learning code representations. We collect verified
smart contracts from the Ethereum’s block explorer and analytic
platform - Etherscan® using web scrapers built by ourselves. Ta-
ble 1 shows the statistics of the training dataset. We have gathered
75,006 verified smart contracts written in Solidity language. 55,006
of them are used for training while the remaining 20,000 are used
as the datasets for the code clone detection and code clustering
tasks.

Since a smart contract usually consists of a number of subcon-
tracts, we extract subcontracts from each Solidity file. There are
totally 290,390 distinct subcontracts in the dataset. Each subcon-
tract involves an average of 59.47 lines of code. After generating
code variants, the training data is augmented to 1,161,560 samples,
and each sample contains an average of 185.73 type tokens.

Datasets for clone detection and code clustering. We then con-
struct datasets for clone detection and code clustering from the
remaining 20k smart contracts. We extract subcontracts from each

3https://etherscan.io/

Self-Supervised Learning of Smart Contract Representations

Table 2: Statistics of datasets for code clone detection and
code clustering tasks.

clone pairs 3457
Clone detection | # avg code lines per subcontract 116
clusters 119

Code clustering # avg subcontracts per cluster 258.94

avg code lines per subcontract | 60.32

Table 3: Statistics of known buggy smart contracts for bug
detection task.

category A B
contracts 227 319

type A2 | A6 | A10 | Al6 | B1 | B4 | B5 | B7
contracts | 53 | 32 67 75 56 | 30 | 183 | 50

Solidity file and classify them into different categories by their con-
tract names. Small categories (i.e., < 100 subcontracts) are used for
clone detection while large categories (i.e., > 100 subcontracts) for
code clustering. To construct the clone detection dataset, we ran-
domly select a pair of contracts from each of small categories as
a true clone pair, and randomly sample an equal number of false
clone pairs from different categories. Both datasets are then man-
ually checked to reduce noise. Table 2 shows the statistics of the
final datasets for code clone detection and code clustering. Overall,
we collect 3,457 true clone pairs for the clone detection task and
119 large categories are selected for code clustering.

Dataset for bug detection. For evaluating the bug detection task,
we use smart contracts from the Awesome Buggy ERC20 Tokens*.
The dataset is a collection of vulnerabilities in ERC20 smart con-
tracts collected from public resources, which have been manually
checked by 9 contributors. These bugs are divided into 29 types,
and further grouped into three categories: A) bugs in implemen-
tation, B) incompatibilities caused by different compiler versions
and external calls, and C) excessive authorities. Since the quanti-
ties of some types of buggy contracts are small, we filter out types
that contain no more than 30 contracts from the dataset. We also
sample the same amount of validated smart contracts from Open-
Zeppelin®, a library for secure smart contract development. They
are regarded as “bug-free” smart contracts and can help identify
the rate of false positive and false negative samples. Each bug that
is discovered among them is automatically considered as a false
positive. Table 3 describes the statistics of known buggy smart con-
tracts for bug detection task. In total, 227 smart contracts of cate-
gory A and 319 smart contracts of category B are used in our eval-
uation. For each type of the buggy smart contract files, we divide
them equally into two subsets: half of the buggy files are used to
construct a bug embedding matrix, while the other half are taken
as the test set.

4.2 Baselines
We compare our approach with three state-of-the-art methods on
code representations learning: SmartEmbed [14], code2vec [2] and

“https://github.com/sec-bit/awesome-buggy-erc20-tokens
Shitps://github.com/OpenZeppelin/

ICPC 22, May 16-17, 2022, Virtual Event, USA

code2seq [1]. Smartembed is the most advanced smart contract rep-
resentation method. Code2vec and code2seq are state-of-the-art
methods for general programming languages. We do not compare
our method with information retrieval based approaches (e.g. TF-
IDF and N-Gram) because our baseline models have demonstrated
great improvement over information retrieval based methods.

1) SmartEmbed: the latest approach that is specifically designed
for learning smart contract representations. SmartEmbed parses
smart contract code blocks into word streams and converts them
into numerical vectors by word embedding techniques. Then, it
identifies smart contracts that are correlated to known bugs by
their vector similarities.

2) code2vec: an approach to learn representations of general
programming languages. code2vec trains a path encoder on bag-
of-paths that are extracted from ASTs. The path encoder encodes
the selected paths into a single, fixed-length code vector. Then, the
generated code vector is taken as input to a classifier which predicts
the method name. In this way, the model learns useful code vectors
that capture semantic similarities, combinations, and analogies.

3) code2seq: another general approach for learning code repre-
sentations. Similar to code2vec, code2seq represents a code snippet
as a set of compositional paths in its AST. Next, it uses the atten-
tion mechanism to select the relevant paths. The selected paths are
encoded into a vector and further decoded to a natural language
summary of the code snippet.

Since code2vec and code2seq are originally implemented for
Java, we adapt it to Solidity in our work. More specifically, we
change their inputs to the same format as our smart contracts.
We follow their data processing steps to prepare the inputs. The
number of sampled paths from the AST of each individual con-
tract is 100 for both code2vec and code2seq, which is a good sweet
point between capturing enough contract information while keep-
ing training feasible in the GPU’s memory. The dimensions for
word embedding in code2vec, code2seq and SmartEmbed are set
to 128, 128 and 150 respectively, following their original setups.

It is worth noting that we do not compare our approach with pre-
trained models such as CodeBERT[12], because they need large
scale parallel corpora of programming and natural languages for
pre-training, which is inapplicable in the field of smart contracts.

4.3 Implementation Details

We implement our approach based on PyTorch 1.4 and Python 3.6.
To convert smart contracts into ASTs, we use a Solidity parser® for
Python which is built on top of a robust ANTLR4 grammar.

The vocabulary sizes for the type and value tokens are 94 and
20,529, respectively. The embedding dimensions for type tokens
and value tokens are set as 256. The encoder of SRCL contains six
Transformer layers with eight attention heads. The CNN layer con-
sists of four convolution kernels with different sizes (i.e., 3, 5, 7, 9).
The hyperparameters for measuring the importance of the three
learning tasks are 69 = o! = ¢ = 0.5. All models are optimized us-
ing the Adam algorithm with a learning rate of 0.001 and a dropout
ratio of 0.5. The similarity threshold for bug detection and clone de-
tection is empirically set to 0.95. SRCL is trained for 5 epochs with

®https://github.com/ConsenSys/python-solidity-parser

ICPC °22, May 16-17, 2022, Virtual Event, USA

Table 4: Performance of various approaches in the bug de-
tection task.

Approach Precision Recall F1-score
code2vec [2] 0.4144 0.3970 0.3998
SmartEmbed [14] 0.5372 0.4934 0.5017
code2seq [1] 0.5180 0.5573 0.5323
SRCL 0.6266 0.6196 0.6019

a batch size of 64. All models are run on a server with a GeForce
GTX 1080 Ti GPU, 64 GB memory, and Ubuntu 18.04.

4.4 Metrics

We measure the performance of the bug detection and clone detec-
tion tasks using the well-known precision, recall, and F1-score. For
the code clustering task, we use the Adjusted Rand Index (ARI)[41],
which measures the degree of agreement between two data parti-
tions. Let U be the ground truth class assignment, and V be the
number of clusters yielded by a clustering algorithm, the ARI in
our evaluation is defined as follows:

_ RI-E(RI)

" max(RI) — E(RI)
a+b

a+b+c+d

(15)
RI =

where a is the number of element pairs that are in the same clusters
in U and the same clusters in V, b is the number of of pairs of
elements that are in the same clusters in U but different clusters in
V, ¢ denotes the number of pairs of elements that are in different
clusters in U but same clusters in V, d denotes the number of pairs
of elements that are in different clusters in U and different clusters
in V. The range of ARI is -1 between 1, and a higher ARI would
indicate a better clustering result.

5 RESULTS

5.1 Effectiveness in Bug Detection

Table 4 shows the performance of SRCL and baselines in the bug
detection task. We can observe that SRCL achieves the best per-
formance compared to baseline models. For example, the F1-score
obtained by SRCL is 0.6019, which is significantly greater than that
of code2vec (0.3998), SmartEmbed (0.5017), and code2seq (0.5323).

code2seq outperforms code2vec, probably because code2vec only
represents AST paths, while code2seq represents both internal and
terminal nodes in ASTs. SmartEmbed embeds terminal nodes us-
ing FastText [5]. However, the embeddings are not further inte-
grated into vectors of code fragments, which restricts the ability
of SmartEmbed in representing bug relevant tokens. Compared to
these approaches, SRCL incorporates both type and value informa-
tion in ASTs and explicitly integrates them through a Transformer
encoder for capturing both lexical and syntactical knowledge of
smart contracts.

Furthermore, code2vec and code2seq train their encoders using
the contract name generation task. However, unlike general pro-
gramming languages, the name (e.g. Token, ERC20 and Standard-
Token) of a smart contract usually does not present its semantics.

Shouliang Yang, Xiaodong Gu, and Beijun Shen

Table 5: Performance of various approaches in the code
clone detection task.

Approach Precision Recall F1-score
SmartEmbed [14] 0.6698 0.4241 0.4617
code2vec [2] 0.7395 0.5269 0.5105
code2seq [1] 0.7990 0.5562 0.5789
SRCL 0.7955 0.5908 0.6185

Table 6: Performance of various approaches in the code clus-
tering task.

Approach ARI

SmartEmbed [14] 0.6260
code2vec [2] 0.5365
code2seq [1] 0.6631
SRCL 0.7512

By contrast, the self-supervised tasks in SRCL take into account
both local and global semantics of smart contracts and enable a
better learning of smart contract representations.

5.2 Effectiveness in Clone Detection

Table 5 shows the performance of various approaches in the code
clone detection task. Overall, SRCL obtains the best results com-
pared to baseline models. For example, the recall and F1-score ob-
tained by SRCL are 0.5908 and 0.6185, which are significant greater
than those of SmartEmbed (0.4241 and 0.4617), code2vec (0.5269
and 0.5105) and code2seq (0.5562 and 0.5789).

One reason for this could be that code2vec and code2seq rep-
resent two AST paths that have minor difference as distinct vec-
tors. This may result in incorrect classifications in syntactic clones
which are merely different in identifiers and comments.

SmartEmbed achieves the worst performance. We conjecture
that it does not explicitly represent global semantics, thus restrict-
ing the detection of semantic clones. Comparatively, SRCL mea-
sures the semantic similarities between smart contracts by learn-
ing to represent both local syntax and global semantics.

5.3 Effectiveness in Code Clustering

Table 6 presents the results of various approach in the code clus-
tering task. As can be seen, SRCL achieves the best performance in
terms of ARI (0.7512), followed by code2seq (0.6631) and SmartEm-
bed (0.6260). This indicates that SRCL can successfully cluster smart
contracts with efficacy.

To further analyze their performance, we visualize the code vec-
tors produced by program representation learning methods. More
specifically, we randomly select vectors produced by the four meth-
ods for 10 classes of contracts on the cluster dataset. Then, we map
each vector into a two-dimensional space using T-SNE [48].

Figure 7 plots the visualization of these two-dimensional vec-
tors. We can observe that vectors generated by SRCL has clear
boundaries than those generated by other methods. This facilitates
the K-Means algorithm to cluster contracts. We further observe
that vectors of some classes (e.g. red) are close to each other, nearly

Self-Supervised Learning of Smart Contract Representations

SCRL Code2Vec
0 5
40 4
501 i . . @
* ~ *
20
254 . . . ol ;
' O snda” L]
0+ .
04
L]
5| ® . = —20 L.
~50 4 —40 1
- -
-50 -25 0 25 50 -40 -20 0 20 40
SmartEmbed Code2Seq
40 - 40 » o
e % .
204 o RS 207 » ¢ il
0 - & 07 [- 4
] s —-20 1 & -
20 4
L] .
h 3 a0]
—40 4 - -
-40 -20 0 20 40 60 -40 -20 0 20 40

Figure 7: Visualization of the code vectors produced by dif-
ferent program representation learning methods.

Table 7: Results of ablation studies.

Model F1-score A

SRCL (original model) 0.6681 -

w/o global discriminator 0.5883 -0.0798
w/o local discriminator 0.6427 -0.0254
w/o decoder 0.6243 -0.0483
w/o type replacement 0.6487 -0.0194
w/o value replacement 0.6415 -0.0266
w/o pair Insertion 0.6575 -0.0106

clustered as a point. This confirms our initial finding that code
reuse is a common phenomenon in smart contracts.

5.4 Ablation Study

To get a better insight into SRCL, we perform an in-depth ablation
study on the code clone dataset. The similarity threshold is empir-
ically set to 0.90. The main goal is to validate the effectiveness of
the critical components or techniques in our architecture includ-
ing the global discriminator, the local discriminator, the decoder,
and the code variant generation module.

Table 7 shows the results of all variants of our model. As seen,
all the studied components contribute to the effectiveness of SRCL
in learning smart contract representations. In particular, the global
discriminator contributes the most in terms of F1-score. This is be-
cause the global discriminator is directly correlated to the global
representation of smart contracts. Similarly, the reconstruction ob-
jective of the decoder is also effective as it forces the encoder to
learn key features of smart contracts. The local discriminator also
helps SRCL in learning local syntactic representations.

The three operations for creating code variants are also effec-
tive in learning code representations. The value replacement oper-
ation does not significantly change the syntax and structure of the
original code, while the type replacement and pair insertion oper-
ations considerably modify the original code, reducing the risk of

ICPC 22, May 16-17, 2022, Virtual Event, USA

—— full augmentation
— wio TR

wio VR
— wiolR

065

0.60

20k 40k 60k a0k 100k 120K 150K 200K
The Number of Training Samples

Figure 8: Impacts of different code variant generation tech-
niques in the clone detection task.

overfitting. To further understand the importance of generating
code variants, we conduct an experiment on various fractions of
the training data. Figure 8 shows the results. We can see that the
generation of code variants is more effective on smaller training
sets. This is because small datasets are more likely to overfit train-
ing data than larger datasets. As the scale of dataset increases, the
improvement becomes less significant.

5.5 Summary

Across all the experiments, SRCL significantly outperforms exist-
ing methods in learning smart contract representations. For exam-
ple, SRCL outperforms code2seq by 6.96% and 4% in terms of F1-
score in the bug detection and clone detection tasks, respectively.
SRCL also outperforms code2seq by 8.81% in terms of ARI in the
code clustering task.

All three components contribute to the effectiveness of SRCL.
Among them, the global discriminator has the most significant ef-
fect. Generating code variants also enhances the performance of
SRCL, especially when the scale of training data is small.

Overall, the experimental results suggest that SRCL has remark-
able effectiveness in learning smart contract representations.

6 THREATS TO VALIDITY

We have identified two main threats to the validity.

Data quality threat. The test sets we have used for code clone de-
tection and code clustering are built by matching contract names.
Although we have manually checked the similarities between clone
pairs, there can still be noise. We leave further refinement of the
test set for future work.

Genericity threat. As our work focuses on learning smart con-
tract representations, we only test SRCL on the Solidity language.
Although Solidity is one of the most popular languages for smart
contracts, other programming languages could have different re-
sults. In the future, we will conduct more extensive evaluation of
our approach on other smart contract languages (e.g. Serpent and
LLL) and other programming languages (e.g. Go and VHDL).

7 RELATED WORK

7.1 Learning Program Representations

Learning program representations has been a fundamental prob-
lem in software engineering [1, 2, 6, 57]. Existing approaches for

ICPC °22, May 16-17, 2022, Virtual Event, USA

source code representation fall into two categories, namely, in-
formation retrieval (IR) based approaches and deep learning (DL)
based approaches.

The IR based approaches treat source code as plain texts and
employs various information retrieval techniques for specific soft-
ware engineering tasks. For example, Deckard [22] learns syntax-
structured information from source code for clone detection. Sourcer-
erCC [40] is a token based detector which improves code clone de-
tection for very large code bases by using an optimized inverted
index technique. Lukins et al. [32] showed that the performance of
LDA-based fault localization model is not affected by the size of
subject software system. Kim et al. [24] employed naive Bayes to
match bug reports with source files for bug localization.

Since DL techniques have achieved a great success in NLP, DL
based code representation approaches have attracted much atten-
tion. Nix et al. [37] applied a multi-layer CNN classifier to detect
malicious software programs in mobile apps. Gu et al. [15] pro-
posed DeepCS which jointly represents natural language and source
code (API invocation sequence, token sequence, and method name)
using recurrent neural networks and multi-layer perceptions. Li
et al. [30] proposed CQIL to learn code-query interactions, which
uses a CNN to compute semantic correlations between queries and
code snippets. Zhou et al. [58] presented a context-aware code-to-
code recommendation tool named Lancer, with the support of a
Library-Sensitive Language Model (LSLM) and the BERT model.
ASTNN [57] decomposes a large AST of a code snippet into small
statement trees, recursively encodes multi-way statement trees to
obtain their vectors, and learns the code representation by follow-
ing the naturalness of statements. In these DL based approaches,
the use of deep neural networks significantly improves the under-
standing of code semantics, thereby showing better effectiveness.
However, they are supervised and rely on the availability of labeled
data for training. Since Solidity is a domain-specific language and
suffers from the shortage of labeled training data, these models are
not applicable to smart contracts. Besides, they are usually trained
for the specific tasks, lacking generality to support multiple tasks
with one single model.

Most recently, pre-trained programming language models have
achieved a great success. CodeBERT [12] pre-trains a Transformer-
based neural architecture for programming languages and natural
languages to learn general-purpose representations. ContraCode [21]
pre-trains a neural network to identify functionally similar vari-
ants of a program among many non-equivalent distractors. Infer-
Code [6] pre-trains a tree-based CNN encoder for source code rep-
resentation by predicting subtrees from the context of ASTs. All
these pre-trained models have shown significant effectiveness in
learning code vectors from major programming languages (i.e., Java,
C). However, it is difficult for them to achieve the equally effect
in smart contracts, since smart contracts are highly homogeneous
and redundant. Such data redundancy cause models to be poorly
fitted especially on insufficient training samples.

Different from these works, our SRCL takes into consideration
the unique characteristics of smart contracts, and captures both
local (e.g., structural, lexical) and global (e.g., semantics) features
from unlabeled smart contracts. SRCL designs three data augmen-
tation operations for increasing the diversity of smart contracts in

Shouliang Yang, Xiaodong Gu, and Beijun Shen

training set, thus having the ability of learning representations in
the case of small training samples.

7.2 Deep Learning in Smart Contracts

In recent years, there is an emerging trend in applying deep learn-
ing to smart contracts [34, 55]. For example, Yang et al. [55] pro-
posed a multi-modal transformer-based approach for smart con-
tract summarization, which learns source code representation from
two heterogeneous modalities of the AST, i.e., structure-based tra-
versal sequences and graphs. Mi et al. [34] utilized feature vectors
generated from byte code of smart contracts as the input of a met-
ric learning-based deep neural network to detect vulnerabilities in
smart contracts. Lutz et al. [33] leveraged a multi-output neural
network architecture to learn specific vulnerability types from the
input smart contracts. Zhou et al. [59] proposed an approach to
generating practical inputs for testing smart contracts by using a
representation vector learning model. Shi et al. [45] presented an
MM-SCS model for semantic search of smart contract code, which
captures the data flow and control flow information of the code
from a contract element dependency graph.

The aforementioned works learn code representations in fully
supervised settings with deep neural networks. They are designed
for specific tasks. By contrast, SRCL learns representations of smart
contracts on unlabeled data by leveraging self-supervised techniques.
The learned representations can be generalized for various soft-
ware engineering tasks.

8 CONCLUSION

We have proposed SRCL, a self-supervised representation learn-
ing approach for smart contracts. SRCL learns local and global
information from the pairs of type and value sequences of smart
contracts’ ASTs by a Transformer and CNN encoder, then lever-
ages three well-designed learning tasks to optimize the encoder
for generating high-quality representation. Experimental results
show that SRCL outperforms the state-of-the-art methods by a sig-
nificant margin.

In future, we will adopt the proposed SRCL on larger-scale datasets
in different programming languages and for a variety of software
engineering tasks such as code-to-code search and contract name
generation.

ACKNOWLEDGMENTS

This research is supported by National Natural Science Foundation
of China (Grant No. 62102244, 62032004).

REFERENCES

[1] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Gener-
ating Sequences from Structured Representations of Code. In 7th International
Conference on Learning Representations (ICLR).

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-

ing distributed representations of code. Proceedings of the ACM on Programming

Languages. 3, POPL (2019), 1-29.

[3] Nami Ashizawa, Naoto Yanai, Jason Paul Cruz, and Shingo Okamura. 2021.
Eth2Vec: Learning Contract-Wide Code Representations for Vulnerability Detec-
tion on Ethereum Smart Contracts. In Proceedings of the 3rd ACM International
Symposium on Blockchain and Secure Critical Infrastructure (BSCI). 47-59.

[4] Arshdeep Bahga and Vijay K Madisetti. 2016. Blockchain platform for industrial
internet of things. Journal of Software Engineering and Applications 9, 10 (2016),
533-546.

[2

Self-Supervised Learning of Smart Contract Representations

[10

[11

[12]

[13]

[14

[15]

[19]

[20]

[21

[22]

[23]

[24

[y)
&

[26]

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Trans. Assoc. Comput. Linguis-
tics. 5 (2017), 135-146.

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. InferCode: Self-Supervised
Learning of Code Representations by Predicting Subtrees. In 43rd IEEE/ACM In-
ternational Conference on Software Engineering (ICSE). 1186-1197.

Hengyi Cai, Hongshen Chen, Yonghao Song, Cheng Zhang, Xiaofang Zhao, and
Dawei Yin. 2020. Data Manipulation: Towards Effective Instance Learning for
Neural Dialogue Generation via Learning to Augment and Reweight. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics
(ACL). 6334-6343.

Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin Zheng.
2021. Understanding Code Reuse in Smart Contracts. In 28th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). 470-479.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (NAACL-
HLT). 4171-4186.

Ming Ding, Jie Tang, and Jie Zhang. 2018. Semi-supervised Learning on Graphs
with Generative Adversarial Nets. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management (CIKM). 913-922.
Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi,
Teruko Mitamura, and Eduard Hovy. 2021. A Survey of Data Augmentation
Approaches for NLP. In Findings of the Association for Computational Linguistics
(ACL-IJCNLP). 968-988.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics (EMNLP). 1536-1547.

Kunihiko Fukushima. 1988. Neocognitron: A hierarchical neural network capa-
ble of visual pattern recognition. Neural Networks. 1, 2 (1988), 119-130.
Zhipeng Gao, Lingxiao Jiang, Xin Xia, David Lo, and John Grundy. 2021. Check-
ing Smart Contracts With Structural Code Embedding. IEEE Transactions on
Software Engineering. 47, 12 (2021), 2874-2891.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering (ICSE).
ACM, 933-944.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019. Augmenting Data with
Mixup for Sentence Classification: An Empirical Study. CoRR abs/1905.08941
(2019).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Resid-
ual Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770-778.

Ningyu He, Lei Wu, Haoyu Wang, Yao Guo, and Xuxian Jiang. 2020. Charac-
terizing Code Clones in the Ethereum Smart Contract Ecosystem. In 24th In-
ternational Conference on Financial Cryptography and Data Security, Vol. 12059.
Springer, 654-675.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment gen-
eration. In Proceedings of the 26th Conference on Program Comprehension (ICPC).
ACM, 200-210.

Xuan Huo, Ming Li, and Zhi-Hua Zhou. 2016. Learning Unified Features from
Natural and Programming Languages for Locating Buggy Source Code. In Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence, (IJCAI). 1606-1612.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion
Stoica. 2021. Contrastive Code Representation Learning. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP). 5954~
5971.

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In 29th
International Conference on Software Engineering (ICSE). IEEE Computer Society,
96-105.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth
Silverman, and Angela Y Wu. 2002. An efficient k-means clustering algorithm:
Analysis and implementation. IEEE transactions on pattern analysis and machine
intelligence. 24, 7 (2002), 881-892.

Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. 2013. Where should
we fix this bug? a two-phase recommendation model. IEEE transactions on soft-
ware Engineering. 39, 11 (2013), 1597-1610.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code Predic-
tion by Feeding Trees to Transformers. In 43rd IEEE/ACM International Confer-
ence on Software Engineering (ICSE). 150-162.

Diederik P. Kingma and Prafulla Dhariwal. 2018. Glow: Generative Flow with
Invertible 1x1 Convolutions. In Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing Systems (NeurIPS).
10236-10245.

[27

[28

[29

(31

[32

[33

[35

[36

(37]

'@
&

[39

[40

[41]

[42

[43

[44

[45

[46

[47

(48

[49

[50

ICPC *22, May 16-17, 2022, Virtual Event, USA

Masanari Kondo, Gustavo Ansaldi Oliva, Zhen Ming (Jack) Jiang, Ahmed E. Has-
san, and Osamu Mizuno. 2020. Code cloning in smart contracts: a case study on
verified contracts from the Ethereum blockchain platform. Empir. Softw. Eng. 25,
6 (2020), 4617-4675.

Lingpeng Kong, Cyprien de Masson d’Autume, Lei Yu, Wang Ling, Zihang Dai,
and Dani Yogatama. 2020. A Mutual Information Maximization Perspective of
Language Representation Learning. In 8th International Conference on Learning
Representations (ICLR).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In 8th International Conference on Learn-
ing Representations (ICLR).

Wei Li, Haozhe Qin, Shuhan Yan, Beijun Shen, and Yuting Chen. 2020. Learn-
ing Code-Query Interaction for Enhancing Code Searches. In IEEE International
Conference on Software Maintenance and Evolution (ICSME). 115-126.

Lukas Liebel and Marco Kérner. 2018. Auxiliary Tasks in Multi-task Learning.
CoRR abs/1805.06334 (2018).

Stacy K Lukins, Nicholas A Kraft, and Letha H Etzkorn. 2010. Bug localization us-
ing latent dirichlet allocation. Information and Software Technology. 52, 9 (2010),
972-990.

Oliver Lutz, Huili Chen, Hossein Fereidooni, Christoph Sendner, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, and Farinaz Koushanfar. 2021. ESCORT:
Ethereum Smart COntRacTs Vulnerability Detection using Deep Neural Net-
work and Transfer Learning. CoRR abs/2103.12607 (2021).

Feng Mi, Zhuoyi Wang, Chen Zhao, Jinghui Guo, Fawaz Ahmed, and Latifur
Khan. 2021. VSCL: Automating Vulnerability Detection in Smart Contracts with
Deep Learning. In IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC). 1-9.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In 27th Annual Conference on Neural Information Processing Systems (NIPS).
3111-3119.

Junghyun Min, R. Thomas McCoy, Dipanjan Das, Emily Pitler, and Tal Linzen.
2020. Syntactic Data Augmentation Increases Robustness to Inference Heuristics.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020. 2339-2352.

Robin Nix and Jian Zhang. 2017. Classification of Android apps and malware
using deep neural networks. In International Joint Conference on Neural Networks
(IJCNN). IEEE, 1871-1878.

Nicole Radziwill. 2018. Blockchain revolution: How the technology behind Bit-
coin is changing money, business, and the world. The Quality Management Jour-
nal. 25, 1 (2018), 64-65.

Gozde Giil Sahin and Mark Steedman. 2018. Data Augmentation via Dependency
Tree Morphing for Low-Resource Languages. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing. 5004-5009.

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and
Cristina V. Lopes. 2016. SourcererCC: scaling code clone detection to big-code.
In Proceedings of the 38th International Conference on Software Engineering (ICSE).
ACM, 1157-1168.

Jorge M. Santos and Mark J. Embrechts. 2009. On the Use of the Adjusted Rand
Index as a Metric for Evaluating Supervised Classification. In 19th International
Conference on Artificial Neural Networks (ICANN). Springer, 175-184.
Alexander Savelyev. 2017. Contract law 2.0:'Smart’contracts as the beginning of
the end of classic contract law. Information & communications technology law.
26, 2(2017), 116-134.

Scale. 2022. Data Pricing. [EB/OL]. https://scale.com/pricing, Accessed March
10, 2022.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving Neural
Machine Translation Models with Monolingual Data. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (ACL).
Chaochen Shi, Yong Xiang, Jiangshan Yu, and Longxiang Gao. 2021. Semantic
Code Search for Smart Contracts. CoRR abs/2111.14139 (2021).

Melanie Swan. 2015. Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc.

Nick Szabo. 1997. Formalizing and Securing Relationships on Public Networks.
First Monday. 2, 9 (1997).

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-
SNE. Journal of machine learning research. 9, 11 (2008), 2579-2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Annual Conference on Neural Information Processing Systems. 5998—
6008.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2018. GraphGAN: Graph Representation Learn-
ing With Generative Adversarial Nets. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI), the 30th innovative Applications of
Artificial Intelligence (IAAI), and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI). 2508-2515.

https://scale.com/pricing

ICPC °22, May 16-17, 2022, Virtual Event, USA

[51] William Yang Wang and Diyi Yang. 2015. That’s So Annoying!!!: A Lexical and
Frame-Semantic Embedding Based Data Augmentation Approach to Automatic
Categorization of Annoying Behaviors using #petpeeve Tweets. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
2557-2563.

[52] Jason W. Wei and Kai Zou. 2019. EDA: Easy Data Augmentation Techniques for
Boosting Performance on Text Classification Tasks. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 6381~
6387.

[53] Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. 2020.

Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language

Model. In 8th International Conference on Learning Representations (ICLR).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-

nov, and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for

Language Understanding. In Advances in Neural Information Processing Systems

32: Annual Conference on Neural Information Processing Systems (NeurIPS). 5754~

5764.

[54

[55]

[56

[57

o
&,

[59]

Shouliang Yang, Xiaodong Gu, and Beijun Shen

Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu, Zhengyuan Wei, Xiaoxue Ma,
and Miao Zhang. 2021. A Multi-Modal Transformer-based Code Summarization
Approach for Smart Contracts. In 29th IEEE/ACM International Conference on
Program Comprehension (ICPC). 1-12.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. 2018.
mixup: Beyond Empirical Risk Minimization. In 6th International Conference on
Learning Representations (ICLR).

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering
(ICSE). IEEE / ACM, 783-794.

Shufan Zhou, Beijun Shen, and Hao Zhong. [n.d.]. Lancer: Your Code Tell Me
What You Need. In 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE.

Teng Zhou, Kui Liu, Li Li, Zhe Liu, Jacques Klein, and Tegawendé F Bissyandé.
2021. SmartGift: Learning to Generate Practical Inputs for Testing Smart Con-
tracts. In 2021 IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME). IEEE, 23-34.

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Contract
	2.2 Data Augmentation
	2.3 Self-Supervised Learning

	3 Approach
	3.1 Overview
	3.2 Constructing Structural Sequences
	3.3 Generating Code Variants
	3.4 Representation Learning
	3.5 Downstream Tasks

	4 Experimental Setup
	4.1 Datasets
	4.2 Baselines
	4.3 Implementation Details
	4.4 Metrics

	5 Results
	5.1 Effectiveness in Bug Detection
	5.2 Effectiveness in Clone Detection
	5.3 Effectiveness in Code Clustering
	5.4 Ablation Study
	5.5 Summary

	6 Threats To Validity
	7 Related Work
	7.1 Learning Program Representations
	7.2 Deep Learning in Smart Contracts

	8 conclusion
	Acknowledgments
	References

